Deterministický chaos
Podrobnosti k předmětu Deterministický chaos
Anotace:
Některé pojmy z teorie dynamických systémů. Ergodické systémy a systémy s mísením. Chaos v hamiltonovských systémech, chaos v disipativních systémech. Podivné atraktory, fraktální dimenze, Ljapunovovy exponenty, K-entropie. Aplikace ve fyzice atmosféry a v teorii klimatu. Přednáška je vhodná pro studenty fyziky resp. učitelství fyziky od 2. ročníku .
Sylabus:
1. Základní pojmy z teorie dynamických systemů.
Dynamické systémy (DS) se spojitým a diskrétním časem. Fázový prostor a fázová trajektorie, Poincarého zobrazení. Konzervativní a disipativní DS. Atraktor, repelor, limitní cyklus. Ljapunovská, asymptotická a orbitální stabilita. Strukturální stabilita a bifurkace.
2. Stručná zmínka o chaosu v nelineárních konzervativních systémech.
Ergodické systémy a systémy s mísením. Teorie KAM. Zachování fázového objemu a neexistence atraktorů v konzervativních systémech. Výkonová spektra a korelační funkce chaotických procesů. Aplikace deterministického chaosu v astronomii.
3. Chaos v nelineárních disipativních systémech.
Kontrakce fázového objemu, existence podivných atraktorů, jejich fraktální struktura a neceločíselná dimenze. Spektrum Ljapunovových exponentů. Citlivá závislost na volbu počátečních podmínek a ztráta prediktability. Příklady známých DS s chaotickým chováním.
Lorenzův model (LM), nástin přechodu od Navier-Stokesových rovnic k Saltzmanovým a Lorenzovým rovnicím, jednoduchá stacionární a periodická řešení LM, složité limitní cykly LM, Lorenzův podivný atraktor a jeho topologie, aproximace přenosové funkce LM přenosovou funkcí typu střecha.
4. Scénáře přechodu k chaosu.
5. Hledání chaosu v časových řadách.
Rekonstrukce fázového portrétu z jednorozměrného signálu - metoda časových zpoždění, volba časového zpoždění a dimenze vnoření. Odhad fraktální dimenze, K-entropie a Ljapunovových exponentů.
6. Aplikace deterministického chaosu ve fyzice atmosféry a v teorii klimatu.
Literatura:
1) J. Horák, L. Krlín, A. Raidl: Deterministický chaos a jeho fyzikální aplikace, Academia, Praha, (2003), 437 str.
5) E. Ott: Chaos in dynamical systems, Cambridge University Press, Cambridge, 2.vd, (1993)
6) L. Smith: Chaos - A very Short Introduction, Oxford University Press, Oxford, (2007), 180 str.
a
8) H.D.I. Abarbanel et al.: The analysis of observed chaotic data in physical systems, Rev. Mod. Physics, 65, (1993), 1331-1392
9) Lorenz E.N.: The essence of chaos, University of Washington Press, 3. vyd. (1999)
10) J. C. Sprott: Chaos and Time-Series Analysis, Oxford University Press, Oxford, (2003) , 507 str.
- ** NOVÉ **U3V - 2018: Prediktabilita, klima a chaos (All in One)** NOVÉ **
- Prezentace - PowerPoint
- Videa
- ** NOVÉ ** Kvantifikátory chaosu verze 3 ** NOVÉ **
- ** NOVÉ ** Chaotická data - zpracování a vizualzace ** NOVÉ **
- Kůs P., Hrbek T.: Chaos v konzervativních systémech
- Volně dostupné důležité publikace ke stažení
- Film "Teorie chaosu"
- Zkouška a zkouškové projekty